US009229961B2

a2z United States Patent (10) Patent No.: US 9,229,961 B2
Bestgen et al. 45) Date of Patent: *Jan. 5, 2016
(54) DATABASE MANAGEMENT DELETE 5,926,813 A * 7/1999 Chaudhurietal. ... /1
EFFICIENCY 5,950,186 A * 9/1999 Chaudhurietal. 1/1
6,026,406 A 2/2000 Huang et al.
. . . . 6,047,298 A * 4/2000 Morishitacocc.e. 715/236
(71) Applicant: IC“ter“at‘t‘f“alEr“s‘“Iﬁ:in}’[;Eg‘S“)es 6.098.075 A * 82000 Becraftetal. 11
orporation, Armonk, (Continued)
(72) Inventors: Robert J. Bestgen, Rochester, MN (US);
Daniel E. Beuch, Rochester, MN (US) FOREIGN PATENT DOCUMENTS
(73) Assignee: International Business Machines EP 2144177 A2 12010
C tion, Armonk, NY (US
orporation, Armonk, NY (US) OTHER PUBLICATIONS
(*) Notice: SubjeCt. to any diSCIaimer’. the term of this Graefe, G., “Sorting and Indexing with Partitioned B-Trees”, Pro-
patent is extended or adjusted under 35 .
U.S.C. 154(b) by 213 days. ceedings of the 2003 CIDR Conference, pp. 1-13.
))))) (Continued)
This patent is subject to a terminal dis-
claimer.
(21) Appl No.: 13/795,262 Primary Examiner — James TrqullO
Assistant Examiner — Hubert Cheung
(22) Filed: Mar. 12,2013 (74) Attorney, Agent, or Firm — Scott A. Berger; James R.
(65) Nock
65 Prior Publication Data
US 2014/0229429 A1 Aug. 14,2014 57) ABSTRACT
Related U.S. Application Data A method, system, and computer program product to effi-
(63) Continuation of application No. 13/763,971, filed on ciently delete data from a database is disclosed. The method,
Feb. 11, 2013. system, and computer program product may include structur-
Yy puter program p y
ing the database to have a plurality of tables having indexes to
(1) Int. Cl. related rows and having keys with key values associated with
GO6F 17/30 (2006.01) particular rows. The method, system, and computer program
(52) US.Cl product may include deleting rows in the database tables by
CPC ... GOGF 17/302 ?9 (2013.01); GOGF 17/303 deleting keys in indexes related to the rows in an order such
(2013.01); GOGF 17/30955 (2013.01) that corresponding rows are deleted based on relation to the
(58) Field of Classification Search P &
keys. The method, system, and computer program product
CPC i GOGF 17/30289 may include ordering the rows to be deleted based on con-
See application file for complete search history. cepts such as hierarchy, spatial locality, temporal locality,
(56) References Cited frequency of access, number of rows, and value uniqueness.

U.S. PATENT DOCUMENTS

5,535,385 A * 7/1996 Griffinetal. .. . Ul
5,826,257 A * 10/1998 Snelling, Jr. ..o /1

8

Comparatively closely related relationships may be priori-
tized to be deleted.

15 Claims, 8 Drawing Sheets

7 Recelve delets request
810 J

Determine
‘values associated
with delete

£20

1

Associate values to
delete with index
nodesikeys
530

1

Order dolete based
on relationships of
index nodestkeys
40

!

Delete rows in order

US 9,229,961 B2

Page 2
(56) References Cited 2010/0036864 Al* 2/2010 Augenstein etal. 707/102
2010/0106682 Al 4/2010 Pauly
U.S. PATENT DOCUMENTS 2010/0161553 AL* 6/2010 Parketal. woooooooreoreorii. 707/610
2011/0071986 Al* 3/2011 Schmidtetal. 707/684
6,651,075 B1* 11/2003 Kusters et al.cccooeerrrrrro.. 11 2012/0016881 Al ~ 1/2012 Hile et al.
6,675,157 B1* 1/2004 Mitchellccooocovvcrvivemrere. /1 2012/0136869 Al* 5/2012 Kaufmannetal ... 707/741
7,490,084 B2 2/2009 Kothuri et al. 2013/0185281 Al* 7/2013 J(_)ppa etal. 707/714
7,593,341 Bl* 9/2009 Burioletal.ccoccoo.... 370/238 2013/0268498 Al* 10/2013 Siscoetal. 707/692
7,644,107 B2 1/2010 Neagovici-Negoescu et al. 2013/0275367 Al* 10/2013 Shl_lma etal. . .. 707/609
8,032,503 B2 10/2011 Bouloy etal. 2013/0318131 Al* 11/2013 Relsm_a.n 707/813
8,140,495 B2 3/2012 Carlin et al. 2014/0172783 Al 6/2014 Suzuki et al.
8,161,015 B2 4/2012 Kennedy et al.
8352422 B2 1/2013 Prahlad et al. OTHER PUBLICATIONS
8,504,758 B1* 82013 McHughetal. 711/100
2002/0052872 AL* 52002 Yada ..oooccovieeerrriccern 707/6 RD 303005 A, Jul. 1989.
2002/0198867 Al 12/2002 Lohman et al. Bestgen, R., et al., “Management of Searches in a Database System”,
2003/0037042 Al* 2/2003 Kametani 707/3 U.S. Appl. No. 13/793,451, filed Mar. 11, 2013.
2003;01261 16 Al . 7;2003 Cilen}ft al. | , Bestgen, R., et al., “Management of Searches in a Database System”,
2005/0283485 Al* 12/2005 Blaicheretal. 707/100 U.S. Appl. No. 13/833,288, filed Mar. 15, 2013.
200710174300 A1+ 72007 Pettovello ool Sopoo Desteen R etal, “Management of Updates in a Database Systen”,
2007/0280199 AL* 12/2007 Rong ... 305351 g R Mamasemont of Undates in 4 "
estgen, R., et al, “Management of Updates in a Database System”,
2008/0077584 Al* 3/2008 Bachmann et al ... 707/5
2008/0098020 AL* 4/2008 Guptaetal. ... 707/101 U Appl. No. 13/833,016, filed Mar. 15, 2013.
P « : 2
2009/0055638 AL* 2/2009 Nakano etal. 713/1 Bestgen, R., et al., “Database Management Delete Efficiency”, U.S.
2009/0063400 Al 3/2009 Borkar et al. Appl. No. 13763,971, filed Feb. 11, 2013.
2009/0064160 Al 3/2009 Larson et al.
2009/0210413 Al* 82009 Hayashietal. 707/5 * cited by examiner

U.S. Patent Jan. 5,2016 Sheet 1 of 8

US 9,229,961 B2

Client Computer

Storage

System
135

Database Management

160
T
f_ 112
Network
1/0 Devices 155
A Y
105
110 115
y { \ 2
CPU 1/0 Device Interface Network
Interface
A \ A
Y Y Y
Interconnect (Bus) 120
A A
125 130
\J (’ Y {’
Memory

Result Set

et
.
=3

Query

ek
AN
N

Applications

|b—
w4
=}

FIG. 1

U.S. Patent Jan. 5,2016 Sheet 2 of 8 US 9,229,961 B2

Database Management System 135
Query Plan Cache
243
Execution Plan 246
Parsed
» Statement
215 A
Yy . -
. . Execution
Query Parser Optimizer Enoi |
- gine
145 210 220
230
X A X
A 4 \ 4
Database 232
Tables 235
Indexes 240
Y
Application Result Set
150 140

FIG. 2

U.S. Patent Jan. 5,2016 Sheet 3 of 8 US 9,229,961 B2

Database
232A Table 310

Record# |Account#
2112R
17030
2619Y
1232G
14988
2334pP
1981W
2827B

|||]wW]] —

Index 311

— Nodel
| 321 S

,//NOdGZ \ ‘ Node3
32 J-K] 323 (

m Node5

Node6 Node7
| 324 }K | 325 e 326 M R

/| FATAY /\

s (30 0| a3 m 333 1 y 34 | [335 |

7 7

Node8 Node9 WNodelO Nodell Nodel2 Nodel3 Nodeld Nodel5s
1232G 1498B 17030 1981W 2112R 2334P 2619Y 2827B

FIG. 3

U.S. Patent

Database
232A Table 310

Record# |Account#

Delctc List 410 1]2112R
Record 2 everrerrerfrrersesss »2|17030 ...
Record 5+ | ... p-3[2610Y |
Record 37" 4|1232G
Record 7-..., == " 511498B ..

6[2334p ™.
i gl198 W,
8|2827B

Index 311

PN _._3;:\}"6'de 1

T Node2 S Node3
m A T
—< _~Node4
| 324 }r JEE

_,'Nod%S
L s

38 | | 329 f | 330

’ S\

f \;””331{ (m 13331} MMY

3

Node8 Node9 Nodel0 Nodell Nodel2 Nodel3 Nodel4 Nodel5s
1232G 1498B 17030 1981W 2112R 2334P 2619Y 2827B

FIG. 4

Jan. 5, 2016 Sheet 4 of 8 US 9,229,961 B2

U.S. Patent Jan. 5, 2016 Sheet 5 of 8
Databasc
232A Tablc 310
Record# |Account#
Start Delete List 410 1 21123

- Record 2. evrrseeereensfrrnnnnnes »2[17030 ..

519 ~™ Record5-... [IS - 3|2619Y " .

_ ‘ Record 3 4 2*(; 4 12326 .
7 Record 7-.... 514988 ...

Finish el 6[2334p " |

AT 1981W-,

8|2827B

{430
Index 311 i
Start Nodel

1232G

Node8 Node9 Nodel0 Nodell

Finish)

1498B 17030

GEH

Nodel2 Nodel3 Nodel4 Nodels
1981W 2112R 2334P 2619Y 2827B

FIG. 5

US 9,229,961 B2

U.S. Patent Jan. 5,2016 Sheet 6 of 8 US 9,229,961 B2

Databasc
232A Table 310
Record# | Account#
Delete List 410 1|2112R Start
RECOIA 2 evvrereeesesforsenans »2[17030 .. |/
Record 5+, | ... p 326197 -+ | AT
Record 3+ 2] 4[1232G . 610
Record 7--... 7 " 5[1498B-.. £
....... . 62334p .|
A l98 W
8|2827B % :| ! Finish
Index 311 .
Start Nodel

Node8 Node9 Nodel0 Nodell Nodel2 Nodel3 Nodel4 Nodel5
1232G 1498B 17030 1981W 2112R 2334P 2619Y 2827B

FIG. 6

US 9,229,961 B2

U.S. Patent Jan. 5, 2016 Sheet 7 of 8
Database
232A Table 310
Record# |Account#
Delete List 410 1]2112R
Record 2.vvevvrrrsnrenfrrnsnnns p2(17030 --.
Record Seeee., | 326107 e, -
Record 3+ 4 2(; --------- 4{1232G L
Record 7--... 77] [ECT T R
............ 6[2334p - | %
A 7l1981W-
8[282713
{ 430
Index 311

Node8 Node9 Nodel0
1232G 1498B 17030 1981W
Start 710

Nodell

332 /\ [\ ’333 J

\3// §/3 3

Nodel2 Nodel3
2112R 2334P

.

: Finish

Nodel4 Nodel5
2619Y 2827B

Finish

U.S. Patent

Jan. 5, 2016

el
(=

Sheet 8 of 8

C

810

Receive delete request>

A 4

Determine
values associated
with delete
820

A 4

Associate values to
delete with index
nodes’keys
830

A 4

Order delete based
on relationships of
index nodes’keys
840

Delete rows in order

850

FIG. 8

US 9,229,961 B2

US 9,229,961 B2

1
DATABASE MANAGEMENT DELETE
EFFICIENCY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of co-pending U.S.
patent application Ser. No. 13/763,971, filed Feb. 11, 2013.
The aforementioned related patent application is herein
incorporated by reference in its entirety.

TECHNICAL FIELD

This disclosure relates generally to computing systems
and, more particularly, relates to database management sys-
tems.

BACKGROUND

Databases are used to store information for numerous types
of applications. Examples include various industrial, com-
mercial, technical, scientific, and educational applications.
Database management systems (DBMSs) are a typical
mechanism for accessing data stored in a database. DBMSs
are typically configured to separate the process of storing data
from accessing, manipulating, or using data stored in a data-
base.

A database may not be able to grow indefinitely. A database
administrator may desire to purge data from the database.
Deleting a large amount of data may take an amount of time
that is not insignificant. The database administrator may have
a small maintenance window. The maintenance may need to
occur in real-time while applications remain active. It may be
desirable for maintenance such as deleting data to be per-
formed efficiently.

SUMMARY

A method, system, and computer program product to effi-
ciently delete data from a database is disclosed. The method,
system, and computer program product may include structur-
ing the database to have a plurality of tables having indexes to
related rows and having keys with key values associated with
particular rows. The method, system, and computer program
product may include deleting rows in the database tables by
deleting keys in indexes related to the rows in an order such
that corresponding rows are deleted based on relation to the
keys. The method, system, and computer program product
may include ordering the rows to be deleted based on con-
cepts such as hierarchy, spatial locality, temporal locality,
frequency of access, number of rows, and value uniqueness.
Comparatively closely related relationships may be priori-
tized to be deleted.

Aspects of the disclosure may include structuring a data-
base that may include one or more tables and one or more
indexes. Aspects of the disclosure may speed-up SQL
DELETE operations over tables with many indexes. Aspects
of the disclosure may include the SQL optimizer taking into
consideration the key structure of the indexes. Aspects of the
disclosure may include the optimizer processing the rows to
be operated-on in an order relating to the key structure.
Aspects of the disclosure may order (e.g., sort, organize,
arrange) rows (e.g., records, entries) to be deleted. Aspects of
the disclosure may reduce the number of times a given index
page is revisited. Aspects of the disclosure may promote
efficiency when indexes have similar leading keys. Aspects of

10

20

35

40

45

50

55

2

the disclosure may reduce I/O on indexes. Aspects of the
disclosure may reduce overall input-output (I/0) of SQL
DELETE operations.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example representation of a computer
system connected to a client computer via a network accord-
ing to an embodiment;

FIG. 2 illustrates an example database management system
(DBMS) according to an embodiment;

FIG. 3 illustrates an example database including a table and
an index according to an embodiment;

FIG. 4 shows a list of records to be deleted and the locations
of the records in the example database according to an
embodiment;

FIG. 5illustrates maintenance on an index when deleting in
an order of records a user wants to delete according to an
embodiment;

FIG. 6 illustrates maintenance on an index when deleting in
an order of values a user wants to delete according to an
embodiment;

FIG. 7 illustrates maintenance on an index when deleting in
an order of index key values a user wants to delete according
to an embodiment; and

FIG. 8 is a flowchart illustrating an operation to manage a
database according to an embodiment.

DETAILED DESCRIPTION

A database may not be able to grow indefinitely. A database
administrator may desire to purge data from the database.
Deleting a large amount of data may take an amount of time
that is not insignificant. The database administrator may have
a small maintenance window. The maintenance may need to
occur in real-time while applications remain active. It may be
desirable for maintenance such as deleting data to be per-
formed efficiently.

A time-consuming aspect of maintenance in the form of a
mass-delete may be index maintenance. In deleting one or
more rows from a table, indexes associated with the one or
more rows may be maintained in real-time. Real-time main-
tenance may enable the indexes to remain available for query
access. Significant input-output (I/O) may result depending
on factors such as memory size and the size of the indexes
over the table. Random access to bring into memory the
appropriate pages of the indexes may result as rows are
deleted from the table. A given index page may need to be
revisited multiple times, which may result in a fault into
memory during an execution of a delete statement such as
SQL DELETE. Reducing the number of times a given index
page is revisited may result in efficiently deleting data.

Aspects of the disclosure may include structuring a data-
base that may include one or more tables and one or more
indexes. Aspects of the disclosure may speed-up SQL
DELETE operations over tables with many indexes. Aspects
of'the disclosure may include the Structured Query Language
(SQL) optimizer taking into consideration the key structure of
the indexes. Aspects of the disclosure may include the opti-
mizer processing the rows to be operated-on in an order
relating to the key structure. Aspects of the disclosure may
order (e.g., sort, organize, arrange) rows (e.g., records,
entries) to be deleted. Aspects of the disclosure may reduce
the number of times a given index page is revisited. Aspects of
the disclosure may promote efficiency when indexes have
similar leading keys. Aspects of the disclosure may reduce

US 9,229,961 B2

3

1/0 on indexes. Aspects of the disclosure may reduce overall
1/0 of SQL DELETE operations.

FIG. 1 illustrates an example representation of a computer
system 100 connected to one or more client computers 160
via a network 155, according to some embodiments. For the
purposes of this disclosure, computer system 100 may repre-
sent practically any type of computer, computer system, or
other programmable electronic device, including but not lim-
ited to, a client computer, a server computet, a portable com-
puter, a handheld computer, an embedded controller, etc. In
some embodiments, computer system 100 may be imple-
mented using one or more networked computers, e.g., in a
cluster or other distributed computing system.

The computer system 100 may include, without limitation,
one or more processors (CPUs) 105, a network interface 115,
an interconnect 120, a memory 125, and a storage 130. The
computer system 100 may also include an I/O device inter-
face 110 used to connect /O devices 112, e.g., keyboard,
display, and mouse devices, to the computer system 100.

Each processor 105 may retrieve and execute program-
ming instructions stored in the memory 125 or storage 130.
Similarly, the processor 105 may store and retrieve applica-
tion data residing in the memory 125. The interconnect 120
may transmit programming instructions and application data
between each processor 105, /O device interface 110, net-
work interface 115, memory 125, and storage 130. The inter-
connect 120 may be one or more busses. The processor 105
may be a single central processing unit (CPU), multiple
CPUs, or a single CPU having multiple processing cores in
various embodiments. In one embodiment, a processor 105
may be a digital signal processor (DSP).

The memory 125 may be representative of a random access
memory, e.g., Static Random Access Memory (SRAM),
Dynamic Random Access Memory (DRAM), read-only
memory, or flash memory. The storage 130 may be represen-
tative of a non-volatile memory, such as a hard disk drive,
solid state device (SSD), or removable memory cards, optical
storage, flash memory devices, network attached storage
(NAS), or connections to storage area network (SAN)
devices, or other devices that may store non-volatile data. The
network interface 115 may be configured to transmit data via
the communications network 155.

The memory 125 may include a database management
system (DBMS) 135, a result set 140, a query 145, and appli-
cations 150. Although these elements are illustrated as resid-
ing in the memory 125, any of the elements, or combinations
thereof, may reside in the storage 130 or partially in the
memory 125 and partially in the storage 130. Each of these
elements will be described in greater detail in accordance
with FIG. 2.

The network 155 may be any suitable network or combi-
nation of networks and may support any appropriate protocol
suitable for communication of data and/or code to/from the
server computer system 100 and the client computer system
160. In some embodiments, the network 155 may support
wireless communications. In other embodiments, the net-
work 155 may support hardwired communications. The net-
work 155 may be the Internet and may support Internet Pro-
tocol in some embodiments. In other embodiments, the
network 155 may be implemented as a local area network
(LAN) or a wide area network (WAN). The network 155 may
also be implemented as a cellular data network. Although the
network 155 is shown as a single network in the figures, one
or more networks of the same or different types may be
included.

The client computer system 160 may include some or all of
the hardware and software elements of the computer system

10

15

20

25

30

35

40

45

50

55

60

65

4

100 previously described. As shown, there may be one or
more client computers 160 connected to the computer system
100 via the network 155. In some embodiments, one or more
client computers 160 may send a query 145 by network 155 to
computer system 100 and receive a result set 140.

FIG. 2 illustrates an example database management system
(DBMS) 135. The DBMS 135 may include a parser 210, an
optimizer 220, an execution engine 230, and a database 232.
The parser 210 may receive a database query 145 from an
application 150. In some embodiments, the database query
145 may be in the form of a Structured Query Language
(SQL) statement. The parser 210 may generate a parsed state-
ment 215. The parser 210 may send the parsed statement 215
to an optimizer 220. The optimizer 220 may attempt to opti-
mize the parsed statement. In some embodiments, optimizing
may improve the performance of the database query 145 by,
for example, reducing the amount of time it takes to provide
a user with a response. The optimizer 220 may generate an
execution plan 246, which may be maintained in a query plan
cache 245, according to some embodiments. The query plan
cache 245 may include one or more execution plans 246,
including the current execution plan as well as previously
used execution plans. Once an execution plan 246 is gener-
ated, the execution plan 246 may be sent to the execution
engine 230. The execution engine 230 may execute the query
145. Executing the query 145 may include finding and retriev-
ing data in the database tables 235 that satisfies the criteria
supplied in the query 145. The execution engine 230 may
store the data returned matching the query 145 in a result set
140. The DBMS 135 may return the result set 140 to an
application 150, such as the application in which the database
query 145 was generated, as a response to the database query
145.

A database 232 may include one or more tables 235 and, in
some embodiments, one or more indexes 240. A database
table 235 may organize data into rows and columns. Each row
of'a database table 235 may correspond to an individual entry,
atuple, or a record in the database 232. A column may define
what is stored in each entry, tuple, or record. In some embodi-
ments, columns of a table 235 may also be referred to as fields
or attributes. Each table 235 within the database 232 may
have a unique name. Each column within a table 235 may also
have a unique name. A row, tuple, or record, however, within
a particular table 235 may not be unique, according to some
embodiments. A database 232 may also include one or more
indexes 240. An index 240 may be a data structure that may
inform the DBMS 135 of the location of a particular record
within a table 235 if given a particular indexed column value.
In some embodiments, the execution engine 230 may use the
one or more indexes 240 to locate data within a table 235. In
other embodiments, the execution engine 230 may scan the
tables 235 without using an index 240.

FIG. 3 illustrates an example database 232A including a
table 310 and an index 311. In embodiments, many rows and
many columns may exist in the table 310. The table 310 may
include a “Record#” column denoting record numbers and an
“Account#” column denoting account numbers for custom-
ers. Bach row may have a unique record number, represented
by record numbers 1, 2, 3, 4, 5, 6, 7, 8 in table 310. Account
numbers may correspond with the record numbers such as
account numbers 2112R, 17030, 2619Y, 1232G, 1498B,
2334P, 1981W, 2827B. Other possibilities for tables are con-
sidered.

The index 311 may be represented as a tree structure as in
FIG. 3. The index 311 may include a collection of nodes
labeled 321-335 for nodes 1-15. Each node may be a data
structure which may include a value that may be a key value.

US 9,229,961 B2

5

The index 311 may correlate to the table 310. In an embodi-
ment, Nodel 321 may include account numbers with values
between 1001 and 3000. Node2 322 may be a child of Nodel
321 and may include account numbers with values between
1001 and 2000. Node3 323 may be a child of Nodel 321 and
may include account numbers with values between 2001 and
3000. Node4 324 may be a child of Node2 322 and may
include account numbers with values between 1001 and
1500. Node5 325 may be a child of Node2 322 and may
include account numbers with values between 1501 and
2000. Node6 326 may be a child of Node3 323 and may
include account numbers with values between 2001 and
2500. Node7 327 may be a child of Node3 323 and may
include account numbers with values between 2501 and
3000. Inindex 311 of FIG. 3, Node8 has a value of 1232G and
is labeled 328, Node9 has a value of 1498B and is labeled 329,
Nodel0 has a value of 17030 and is labeled 330, Nodel1 has
a value of 1981 W and is labeled 331, Nodel2 has a value of
2112R and is labeled 332, Nodel3 has a value of 2334P and
is labeled 333, Nodel4 has a value of 2619Y and is labeled
334, Nodel5 has a value of 2827B and is labeled 335. Node8
328 and Node9 329 may be children of Node4 324. Nodel0
330 and Node11 331 may be children of Node5 325. Nodel2
332 and Node13 333 may be children of Node6 326. Nodel4
334 and Nodel5 335 may be children of Node7 327. In an
embodiment, the tree structure may be a binary search tree
where the left subtree of Nodel 321 contains only nodes with
keys less than Nodel’s key, the right subtree of Nodel 321
contains only nodes with keys greater than the Nodel’s key,
both the left and right subtrees may also be binary search
trees, and there may be no duplicate nodes. Other possibilities
for indexes are considered.

FIG. 4 shows alist of records to be deleted and the locations
of'the records in the example database 232A. A delete list 410
may represent records corresponding to rows a user wants to
delete. Arrows 420 may represent how the order of the records
to be deleted in delete list 410 may not be in the same order as
the records in table 310. The fact that arrows 420 intersect for
Record 3 and Record 5 depict the different orders. In embodi-
ments, delete list 410 may represent values such as account
numbers in table 310 a user wants to delete. For example,
instead of delete list 410 consisting of records 2, 5, 3, 7 it may
consist of account numbers 17030, 1498B, 2619Y, 1981W.
Thus, delete list 410 may include values of a column in
associated rows in table 310.

Whether the delete list 410 represents records or account
numbers, in the example above rows to be deleted to which
arrows 420 point are identical. Key values in index 311 may
relate or correspond to values of particular rows of table 310.
Arrows 430 may represent how a value of a particular row of
a particular column of table 310 may correlate to a key of
index 311. In FIG. 4, the value 17030 in table 310 correlates
to Nodel0 330 in index 311, the value 2619Y in table 310
correlates to Nodel4 334 in index 311, the value 1498B in
table 310 correlates to Node9 329 in index 311, the value
1981W in table 310 correlates to Nodel1 331 in index 311.

FIG. 5 illustrates maintenance on an index when deleting in
an order of records a user wants to delete. Aspects of FIG. 5§
are the same as FIG. 4. Maintenance on the table 310 may be
efficient when records corresponding to rows a user wants to
delete such as delete list 410 are to be deleted in an order
represented by arrows 510. As shown by arrows 510, a delete
may start with the top record and finish with the bottom
record. Each record may be quickly accessed by a direct
record number lookup operation. Thus, records may be
directly accessed in a manner similar to an array. Access to the
table 310 may be efficient because the database 232A may

10

15

20

25

30

35

40

45

50

55

60

65

6

“look ahead” by prefetching a row corresponding to a record
to be deleted in delete list 410 before an actual delete occurs.

In contrast with maintenance on the table 310, maintenance
on the index 311 may not be efficient when records a user
wants to delete such as delete list 410 are to be deleted in an
order represented by arrows 510. The delete operation may
search from the top of the index tree traveling up and down a
series of nodes to find a value to remove as depicted in FIG. 5.
The effect may be a pattern of “jumping around” the index. A
given node may need to be brought into memory more than
once in a busy memory pool. For example, Node5 325 is a
parent node to Node10 330 with the value 17030 correspond-
ing to Record 2 and Nodell 331 with the value 1981W
corresponding to Record 7. In embodiments, using delete list
410 may include Node5 325 being brought into memory in
the operation of deleting the value of Record 2 in Node10 330,
NodeS5 being floated back out to disk and no longer in memory
as Record 5 and Record 3 are deleted, and Node5 325 being
brought back into memory in the operation of deleting the
value of Record 7 in Nodell 331. In embodiments with
multiple indexes over a given table, each index may need to be
searched on a single record delete. In such a situation, main-
tenance may become less efficient as a given node may be
brought into memory many times.

Arrows 511 depict a delete operation searching the index
tree using delete list 410 to delete in an order of records
represented by arrows 510. First, to delete the row corre-
sponding with the value of 17030 associated with Record 2,
the database may look at Nodel 321 then Node2 322 then
Node5 325 and then Nodel0 330. Next, to delete the row
corresponding with the value of 1498B associated with
Record 5, the database may returnup the tree to look at Node5
325 then Node2 322 then Node4 324 and then Node9 329.
Next, to delete the row corresponding with the value of
2619Y associated with Record 3, the database may return up
the tree to look at Node4 324 then Node2 322 then Nodel 321
then Node3 323 then Node7 327 and then Nodel4 334.
Lastly, to delete the row corresponding with the value of
1981W associated with Record 7, the database may return up
the tree to look again at Node7 327 then again Node3 323 then
again Nodel 321 then again Node2 322 then again Node5 325
and then Nodel1 331. Maintenance may be less efficient in
this way because nodes such as Nodel 321, Node2 322,
Node3 323, Node5 325, and Node7 327 may be brought into
memory more frequently than necessary.

FIG. 6 illustrates maintenance on an index when deleting in
an order of values a user wants to delete. Aspects of FIG. 6 are
the same as FIG. 4, 5. Maintenance on the index 311 may not
be efficient when records corresponding to rows a user wants
to delete such as delete list 410 are to be deleted in an order
represented by arrows 610. Arrows 611 depict a delete opera-
tion searching the index tree using delete list 410 to delete in
an order of values represented by arrows 610. First, to delete
the row corresponding with the value of 17030, the database
may look at Nodel 321 then Node2 322 then Node5 325 and
then Node10 330. Next, to delete the row corresponding with
the value 0f 2619Y, the database may returnup the tree to look
at Node5 325 then Node2 322 then Nodel 321 then Node3
323 then Node7 327 and then Node14 334. Next, to delete the
row corresponding with the value of 1498B, the database may
return up the tree to look again at Node7 327 then again
Node3 323 then again Nodel 321 then Node2 322 then Node4
324 and then Node9 329. Lastly, to delete the row correspond-
ing with the value of 1981W, the database may return up the
tree to look at Node4 324 then again Node2 322 then again
Node5 325 and then Nodell 331. Maintenance may be less
efficient in this way because nodes such as Nodel 321, Node2

US 9,229,961 B2

7

322, Node3 323, Node5 325, and Node7 327 may be brought
into memory more frequently than necessary.

FIG. 7 illustrates maintenance on an index when deleting in
an order of index key values a user wants to delete. Aspects of
FIG. 7 are the same as FIG. 4, 5, 6. Maintenance on the index
311 may be efficient when records corresponding to rows a
user wants to delete such as delete list 410 are to be deleted in
an order represented by arrows 710. Arrows 711 depict a
delete operation searching the index tree using delete list 410
to delete in an order of index key values represented by arrows
710. First, to delete the row corresponding with the index key
value of 1498B, the database may look at Nodel 321 then
Node2 322 then Noded 324 and then Node9 329. Next, to
delete the row corresponding with the index key value of
17030, the database may return up the tree to look at Noded
324 then Node2 322 then NodeS 325 and then Nodel0 330.
Next, to delete the row corresponding with the index key
value of 1981 W, the database may look at Node5 325 and then
Nodel1 331. Lastly, to delete the row corresponding with the
index key value 0f2619Y, the database may return up the tree
to look at Node5 325 then Node2 322 then Nodel 321 then
Node3 323 then Node7 327 and then Nodel4 334. Mainte-
nance may be efficient by ordering using index key values
because nodes may not be brought into memory more fre-
quently than necessary. Ordering in this manner may not
impact table maintenance because record number lookups
may be the same as an array lookup (i.e. Order 1 search). In
embodiments with tables having multiple columns and mul-
tiple indexes 240, the database 232 and the optimizer 220 may
determine the appropriate order to efficiently perform the
delete which may include minimizing memory I/O.

FIG. 8 is a flowchart illustrating an operation 800 to man-
age a database according to an embodiment. Operation 800
begins by receiving a delete request at block 810. The delete
request 810 may be a SQL DELETE. In embodiments, the
delete request may include a list of rows to delete such as
delete list 410 which represents records a user wants to delete.
In embodiments, the delete request may include values from
columns such as account numbers as represented in table 310.
The delete request may not have ordered the rows to be
deleted in the most efficient order to delete. In particular,
efficiency in terms of I/O may be the focus of operation 800.

Values associated with the delete request may be deter-
mined at block 820. For example, if the delete request 820 is
received with a delete list 410 corresponding to records in a
table 310, a translation to values such as account numbers in
310 may occur to determine the values associated with the
delete request 820. In embodiments, a first column including
a first set of values may include a delete list such as 410 that
then may be translated to a second column including a second
set of values in the same rows. In effect, this is what arrows
420 in FIG. 4 show. In a table with many rows and columns
with many potential indexes, the concept remains the same.
Block 830 may associate values to delete with index nodes or
keys. The values from block 820 may be associated not only
with related rows of the table of the database but also with
nodes or keys of an index. Such keys may have key values
which may be the values as in block 820. In effect, this is what
arrows 430 in FIG. 4 show. In embodiments, values from a
table may be associated with key values of multiple indexes.

Block 840 may order the delete based on relationships of
index nodes or keys. In effect, this is what arrows 710 in FIG.
7 show. A comparatively closely related relationship may
occur when a first relationship between a first key or node and
a baseline key or node is relatively closer than a second
relationship between a second key or node and the baseline
key or node. The baseline key or node may be a key or node

5

10

15

20

25

30

35

40

45

50

55

60

65

8

being searched by operation 800. The order may be a hierar-
chical order which may include values in parent keys being
deleted before values in child keys, from the top of an index
tree to the bottom of the index tree as the operation 800
searches through the keys. In this case, the parent key may be
considered to be a comparatively closely related relationship.
The order may be a spatial locality order which may include
deleting a near key that is in a nearby location as opposed to
a far key located farther away relative to a search key that
operation 800 is searching through. The near key may be
adjacent to the search of operation 800, or at least may be
closer than the far key in terms of a fewer number of “jumps”
it may take to get to the near key from the search key. In this
case, the near key may be considered to be a comparatively
closely related relationship. The order may be a temporal
locality order which may include deleting a loaded key that is
included in memory, perhaps with a search key, during the
search of operation 800 before an unloaded key that is not
included in memory. In this case, the loaded key may be
considered to be a comparatively closely related relationship.
The order may be a frequency order which may include
deleting a frequent key that is frequently accessed to memory
before deleting an infrequent key that is not accessed to
memory as frequently as the frequent key. The frequent key
and the infrequent key may be related to a search key that may
be performing the search of operation 800. In the case of a
frequency order, the frequent key may be considered to be a
comparatively closely related relationship.

A comparatively closely related relationship may also
occur when comparing relationships, as above, across more
than one index. Indexes with more data or more unique values
may have a greater chance of random access to memory. The
order may take into account multiple indexes so that the order
may include a volume order which may include deleting keys
first in a large index that has a greater number of rows than a
small index that has a lesser number of rows. Inthis case, keys
in the large index may be considered to be a comparatively
closely related relationship. The order may take into account
multiple indexes so that the order may be a cardinality order
which may include deleting keys first in a big index thathas a
greater quantity of unique values than a little index that has a
lesser quantity of unique values. In this case, keys in the big
index may be considered to be a comparatively closely related
relationship. In the described embodiments with multiple
indexes, a baseline index that may be of an average number of
rows or number of unique values may be considered when
comparing. The ordering done in block 840 may take into
consideration the expense of the /O for the indexes being
maintained instead of merely the I/O on the table from which
rows are being deleted.

Block 850 may delete rows of the delete request from block
810 in the order from block 840. The deleting of rows in
database tables may occur by deleting keys in indexes. The
keys in indexes being deleted may correspond to rows in the
database tables. By identifying key values, identifying keys
or nodes containing the key values, and deleting the keys
containing the key values, the corresponding rows in the
database tables may be deleted. Maintenance efficiency may
result from ordering the values to be deleted using indexes.
Such efficiency may replace potentially inefficient operations
such as deleting rows from a table in an order the rows arrived
to the table. In total, operation 800 may serve to reduce [/O to
process a DELETE statement and shorten overall runtime.
Further, maintenance may occur in real-time while applica-
tions remain active.

In the foregoing, reference is made to various embodi-
ments. It should be understood, however, that this disclosure

US 9,229,961 B2

9

is not limited to the specifically described embodiments.
Instead, any combination of the described features and ele-
ments, whether related to different embodiments or not, is
contemplated to implement and practice this disclosure.
Many modifications and variations may be apparent to those
of ordinary skill in the art without departing from the scope
and spirit of the described embodiments. Furthermore,
although embodiments of this disclosure may achieve advan-
tages over other possible solutions or over the prior art,
whether or not a particular advantage is achieved by a given
embodiment is not limiting of this disclosure. Thus, the
described aspects, features, embodiments, and advantages are
merely illustrative and are not considered elements or limita-
tions of the appended claims except where explicitly recited
in a claim(s).

As will be appreciated by one skilled in the art, aspects of
the present disclosure may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.), or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module,” or
“system.” Furthermore, aspects of the present disclosure may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination
thereof. More specific examples (a non-exhaustive list) of the
computer readable storage medium would include the follow-
ing: an electrical connection having one or more wires, a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination thereof. In the
context of this disclosure, a computer readable storage
medium may be any tangible medium that can contain, or
store, a program for use by or in connection with an instruc-
tion execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wire line, optical fiber cable, RF,
etc., or any suitable combination thereof.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including:
an object oriented programming language such as Java,
Smalltalk, C+4+, or the like; and conventional procedural pro-

10

15

20

25

30

35

40

45

50

55

60

65

10

gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute as specifically described herein. In addition, the pro-
gram code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software pack-
age, partly on the user’s computer and partly on a remote
computer, or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro-
vider).

Aspects of the present disclosure have been described with
reference to flowchart illustrations, block diagrams, or both,
of methods, apparatuses (systems), and computer program
products according to embodiments of this disclosure. It will
be understood that each block of the flowchart illustrations or
block diagrams, and combinations of blocks in the flowchart
illustrations or block diagrams, can be implemented by com-
puter program instructions. These computer program instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions or acts specified in the
flowchart or block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function or act specified in the flowchart or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus, or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions or acts specified in the flowchart
or block diagram block or blocks.

Embodiments according to this disclosure may be pro-
vided to end-users through a cloud-computing infrastructure.
Cloud computing generally refers to the provision of scalable
computing resources as a service over a network. More for-
mally, cloud computing may be defined as a computing capa-
bility that provides an abstraction between the computing
resource and its underlying technical architecture (e.g., serv-
ers, storage, networks), enabling convenient, on-demand net-
work access to a shared pool of configurable computing
resources that can be rapidly provisioned and released with
minimal management effort or service provider interaction.
Thus, cloud computing allows a user to access virtual com-
puting resources (e.g., storage, data, applications, and even
complete virtualized computing systems) in “the cloud,”
without regard for the underlying physical systems (or loca-
tions of those systems) used to provide the computing
resources.

Typically, cloud-computing resources are provided to a
user on a pay-per-use basis, where users are charged only for
the computing resources actually used (e.g., an amount of
storage space used by a user or a number of virtualized sys-
tems instantiated by the user). A user can access any of the

US 9,229,961 B2

11

resources that reside in the cloud at any time, and from any-
where across the Internet. In context of the present disclosure,
auser may access applications or related data available in the
cloud. For example, the nodes used to create a stream com-
puting application may be virtual machines hosted by a cloud
service provider. Doing so allows a user to access this infor-
mation from any computing system attached to a network
connected to the cloud (e.g., the Internet).

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams or flowchart
illustration, and combinations of blocks in the block diagrams
or flowchart illustration, can be implemented by special pur-
posehardware-based systems that perform the specified func-
tions or acts, or combinations of special purpose hardware
and computer instructions.

While the foregoing is directed to exemplary embodi-
ments, other and further embodiments of the invention may
be devised without departing from the basic scope thereof,
and the scope thereof is determined by the claims that follow.

What is claimed is:

1. A system comprising:

one or more processors; and

program code including a query optimizer, the program

code configured to be executed by the one or more
processors to process a database query, the program
code configured to:
structure a database to have a plurality of database tables
having an indexes associated with one or more rows
and having one or more index keys with index key
values associated with particular rows of the one or
more rows, wherein the indexes are organized as a
search tree; and
delete rows in the database tables for database mainte-
nance in real-time by deleting index keys of the one or
more rows in the database tables, wherein:
the database is managed by deleting one or more
index keys in the database tables,
the deleting the index keys of the one or more index
keys in the database further includes deleting index
keys of the one or more index keys in the one or
more indexes related to the rows of the one or more
rows in an order such that corresponding rows of
the one or more rows are deleted based on a com-
paratively close relationship to the one or more
index keys, and
the comparatively close relationship is a minimum
number of jumps necessary to get from a row asso-
ciated with a near key to a row associated with a
search key.

2. The system of claim 1, wherein the order rows are
deleted includes at least one of a hierarchical order of index
keys in indexes, a spatial locality order of index keys in
indexes which includes prioritizing an index key that is in a
nearby location, a temporal locality order of index keys in

20

30

40

45

50

60

12

indexes which includes prioritizing an index key that is in a
memory, and a frequency order of index keys in indexes
which includes prioritizing an index key that is frequently
accessed to a memory.

3. The system of claim 1, wherein the order rows are
deleted includes at least one of a volume order of index keys
in indexes which includes prioritizing index keys in a first
index that has a greater number of rows than a second index
and a cardinality order of index keys in indexes which
includes prioritizing index keys in a third index that has a
greater quantity of unique values than a fourth index.

4. A computer program product for processing a database
query, the computer program product comprising a non-tran-
sitory computer readable storage medium having program
code embodied therewith, the program code comprising com-
puter readable program code that is configured to:

structure a database to have a plurality of database tables

having an indexes associated with one or more rows and

having one or more index keys with index key values

associated with particular rows of the one or more rows,

wherein the indexes are organized as a search tree; and

delete rows in the database tables for database maintenance

in real-time by deleting index keys of the one or more

rows in the database tables, wherein:

the database is managed by deleting one or more index
keys in the database tables,

the deleting the index keys of the one or more index keys
in the database further includes deleting index keys of
the one or more index keys in the one or more indexes
related to the rows of the one or more rows in an order
such that corresponding rows of the one or more rows
are deleted based on a comparatively close relation-
ship to the one or more index keys, and

the comparatively close relationship is a minimum num-
ber of jumps necessary to get from a row associated
with a near key to a row associated with a search key.

5. The computer program product of claim 4, wherein the
order rows are deleted includes at least one of a hierarchical
order of index keys, a spatial locality order of index keys,
which includes prioritizing an index key that is in a nearby
location, a temporal locality order of index keys, which
includes prioritizing an index key that is in a memory, and a
frequency order of index keys, which includes prioritizing an
index key that is frequently accessed to a memory.

6. The computer program product of claim 4, wherein the
order rows are deleted includes at least one of'a volume order
of'index keys, which includes prioritizing index keys in a first
index that has a greater number of rows than a second index
and a cardinality order of index keys, which includes priori-
tizing index keys in a third index that has a greater quantity of
unique values than a fourth index.

7. The computer program product of claim 4, wherein the
one side of the tree is a leftmost side of the tree.

8. The computer program product of claim 4, wherein the
one side of the tree is a rightmost side of the tree.

9. The computer program product of claim 4, wherein
jumps are movements between nodes up or down the index.

10. The computer program product of claim 4, wherein the
search tree is a binary search tree.

11. A system comprising:

one or more processors; and

program code including a query optimizer, the program

code configured to be executed by the one or more
processors to process a database query, the program
code configured to:

structure a database to a have a plurality of tables having

indexes to related rows and having keys associated with

US 9,229,961 B2
13

particular rows, the database including a first table and a
first index for accessing the first table,
the first index being organized as a search tree having a
plurality of nodes, the plurality of nodes including a
plurality of lower-most child nodes, each lower-most 5
child node storing a key corresponding with a row of
the first table; and
delete three or more rows in the first table by deleting keys
in corresponding lower-most child nodes of the first
index in a first order, 10
the first order beginning at a first lower-most child node
to be deleted, the first lower-most child node being a
node closest to one side of the tree,
the first order including a first subsequent node to be next
deleted after the first lower-most child node, the first 15
subsequent node being a second lower-most child
node reachable from the first lower-most child node in
a first number of jumps in the tree, wherein a second
number of jumps from the second lower-most child
node is required to reach a third lower-most child 20
node to be deleted, wherein the first number of jumps
is fewer than the second number of jumps.
12. The system of claim 11, wherein the one side of the tree
is a leftmost side of the tree.
13. The system of claim 11, wherein the one side of the tree 25
is a rightmost side of the tree.
14. The system of claim 11, wherein jumps are movements
between nodes up or down the index.
15. The system of claim 11, wherein the search tree is a
binary search tree. 30

